Part Number Hot Search : 
166BG 7824A STB6NB50 BZT52C11 GBU4005 2SK123 C1H10 NJW1191
Product Description
Full Text Search
 

To Download MAX4218 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 19-1178; Rev 3; 10/03
ANUAL N KIT M LUATIO ABLE EVA AVAIL
Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable
Features
o High Speed: 300MHz -3dB Bandwidth (MAX4212/MAX4213) 200MHz -3dB Bandwidth (MAX4216/MAX4218/MAX4220) 50MHz 0.1dB Gain Flatness (MAX4212/MAX4213) 600V/s Slew Rate o Single 3.3V/5.0V Operation o Rail-to-Rail Outputs o Input Common-Mode Range Extends Beyond VEE o Low Differential Gain/Phase: 0.02%/0.02 o Low Distortion at 5MHz: -78dBc SFDR -75dB Total Harmonic Distortion o High-Output Drive: 100mA o 400A Shutdown Capability (MAX4213/MAX4218) o High-Output Impedance in Off State (MAX4213/MAX4218) o Space-Saving SOT23, MAX, or QSOP Packages
General Description
The MAX4212/MAX4213 single, MAX4216 dual, MAX4218 triple, and MAX4220 quad op amps are unity-gain-stable devices that combine high-speed performance with Rail-to-Rail (R) outputs. The MAX4213/ MAX4218 have a disable feature that reduces powersupply current to 400A and places the outputs into a high-impedance state. These devices operate from a 3.3V to 10V single supply or from 1.65V to 5V dual supplies. The common-mode input voltage range extends beyond the negative power-supply rail (ground in single-supply applications). These devices require only 5.5mA of quiescent supply current while achieving a 300MHz -3dB bandwidth and a 600V/s slew rate. Input-voltage noise is only 10nV/Hz and input-current noise is only 1.3pA/Hz for either the inverting or noninverting input. These parts are an excellent solution in low-power/low-voltage systems that require wide bandwidth, such as video, communications, and instrumentation. In addition, when disabled, their high-output impedance makes them ideal for multiplexing applications. The MAX4212 comes in a miniature 5-pin SOT23 package, while the MAX4213/MAX4216 come in 8-pin MAX and SO packages. The MAX4218/MAX4220 are available in space-saving 16-pin QSOP and 14-pin SO packages.
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Applications
Battery-Powered Instruments Video Line Driver Analog-to-Digital Converter Interface CCD Imaging Systems Video Routing and Switching Systems
PART MAX4212EUK-T MAX4213ESA MAX4213EUA
Ordering Information
TEMP RANGE -40C to +85C -40C to +85C -40C to +85C PIN PACKAGE 5 SOT23-5 8 SO 8 MAX TOP MARK ABAF -- --
Ordering Information continued at end of data sheet.
Typical Operating Circuit
RF 24 RTO 50 MAX4212 IN RTIN 50 UNITY-GAIN LINE DRIVER (RL = RO + RTO) ZO = 50 RO 50 VEE 2
Pin Configurations
TOP VIEW
VOUT
OUT 1
5
VCC
N.C. 1 IN- 2 IN+ 3
8
EN VCC OUT N.C.
MAX4212
MAX4213
7 6 5
IN+ 3
4
IN-
VEE 4
SOT23-5
MAX/SO
Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.
Pin Configurations continued at end of data sheet. 1
________________________________________________________________ Maxim Integrated Products
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.
Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
ABSOLUTE MAXIMUM RATINGS
Supply Voltage (VCC to VEE) ..................................................12V IN_-, IN_+, OUT_, EN_ .....................(VEE - 0.3V) to (VCC + 0.3V) Output Short-Circuit Duration to VCC or VEE ............. Continuous Continuous Power Dissipation (TA = +70C) 5-Pin SOT23 (derate 7.1mW/C above +70C) ...........571mW 8-Pin SO (derate 5.9mW/C above +70C) .................471mW 8-Pin MAX (derate 4.5mW/C above +70C) ............221mW 14-Pin SO (derate 8.3mW/C above +70C) ...............667mW 16-Pin QSOP (derate 8.3mW/C above +70C) ..........667mW Operating Temperature Range ...........................-40C to +85C Storage Temperature Range .............................-65C to +150C Lead Temperature (soldering, 10s) .................................+300C
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or at any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
DC ELECTRICAL CHARACTERISTICS
(VCC = 5V, VEE = 0, EN_ = 5V, RL = 2k to VCC/2, VOUT = VCC/2, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25C.) PARAMETER Input Common-Mode Voltage Range Input Offset Voltage (Note 1) Input Offset Voltage Temperature Coefficient Input Offset Voltage Matching Input Bias Current Input Offset Current Input Resistance Common-Mode Rejection Ratio Open-Loop Gain (Note 1) IB IOS RIN CMRR AVOL SYMBOL VCM VOS TCVOS Any channels for MAX4216/MAX4218/ MAX4220 (Note 1) (Note 1) Differential mode (-1V VIN +1V) Common mode (-0.2V VCM +2.75V) (VEE - 0.2V) VCM (VCC - 2.25V) 0.25V VOUT 4.75V, RL = 2k 0.5V VOUT 4.5V, RL = 150 1.0V VOUT 4V, RL = 50 RL = 10k RL = 2k Output Voltage Swing VOUT RL = 150 RL = 50 VCC - VOH VOL - VEE VCC - VOH VOL - VEE VCC - VOH VOL - VEE VCC - VOH VOL - VEE 70 55 52 CONDITIONS Guaranteed by CMRR test MAX4212EUK, MAX421_EUA MAX42_ _ES_, MAX42_ _EEE MIN VEE 0.20 4 4 8 1 5.4 0.1 70 3 100 61 59 57 0.05 0.05 0.06 0.06 0.30 0.30 0.70 0.60 0.20 0.20 0.50 0.50 V dB 20 4.0 TYP MAX VCC 2.25 12 9 UNITS V mV V/C mV A A k M dB
2
_______________________________________________________________________________________
Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable
DC ELECTRICAL CHARACTERISTICS (continued)
(VCC = 5V, VEE = 0, EN_ = 5V, RL = 2k to VCC/2, VOUT = VCC/2, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25C.) PARAMETER Output Current Output Short-Circuit Current Open-Loop Output Resistance Power-Supply Rejection Ratio (Note 2) Operating Supply-Voltage Range Disabled Output Resistance EN_ Logic-Low Threshold EN_ Logic-High Threshold EN_ Logic Input Low Current EN_ Logic Input High Current Quiescent Supply Current (per Amplifier) SYMBOL IOUT ISC ROUT VCC = 5V, VEE = 0, VCM = 2.0V PSRR VCC = 5V, VEE = -5V, VCM = 0 VCC = 3.3V, VEE = 0, VCM = 0.90V VS ROUT (OFF) VIL VIH IIL IIH IS (VEE + 0.2V) EN_ VCC EN_ = 0 EN_ = 5V Enabled Disabled (EN_ = 0) VCC - 1.6 0.5 200 0.5 5.5 0.40 400 10 7.0 0.65 VCC to VEE EN_ = 0, 0 VOUT 5V (Note 3) 3.15 20 35 VCC - 2.6 46 54 CONDITIONS RL = 20 to VCC or VEE Sinking or sourcing TA = +25C TA = TMIN to TMAX MIN 70 60 150 8 57 66 45 11.0 V k V V A A mA dB TYP 120 MAX UNITS mA mA
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
_______________________________________________________________________________________
3
Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
AC ELECTRICAL CHARACTERISTICS
(VCC = 5V, VEE = 0, VCM = 2.5V, EN_ = 5V, RF = 24, RL = 100 to VCC/2, VOUT = VCC/2, AVCL = +1, TA = +25C, unless otherwise noted.) PARAMETER Small-Signal -3dB Bandwidth Large-Signal -3dB Bandwidth Bandwidth for 0.1dB Gain Flatness Slew Rate Settling Time to 0.1% Rise/Fall Time Spurious-Free Dynamic Range SYMBOL BWSS BWLS BW0.1dB SR tS tR, tF SFDR CONDITIONS MAX4212/MAX4213 VOUT = 20mVP-P VOUT = 2VP-P MAX4212/MAX4213 VOUT = 20mVP-P VOUT = 2V step VOUT = 2V step VOUT = 100mVP-P fC = 5MHz, VOUT = 2VP-P 2nd harmonic Harmonic Distortion HD fC = 5MHz, VOUT = 2VP-P 3rd harmonic Total harmonic distortion MAX4216/MAX4218/ MAX4220 MAX4216/MAX4218/ MAX4220 MIN TYP 300 200 180 50 35 600 45 1 -78 -78 -82 -75 35 11 0.02 0.02 10 1.3 1 EN_ = 0 f = 10MHz 2 6 100 1 MAX4216/MAX4218/MAX4220, f = 10MHz, VOUT = 20mVP-P XTALK MAX4216/MAX4218/MAX4220, f = 10MHz, VOUT = 2VP-P 0.1 -95 MHz V/s ns ns dBc dBc dB dBc dBm degrees % nV/Hz pA/Hz pF pF ns s dB dB MHz MHz MAX UNITS
Two-Tone, Third-Order Intermodulation Distortion Input 1dB Compression Point Differential Phase Error Differential Gain Error Input Noise-Voltage Density Input Noise-Current Density Input Capacitance Disabled Output Capacitance Output Impedance Amplifier Enable Time Amplifier Disable Time Amplifier Gain Matching Amplifier Crosstalk
IP3
f1 = 10.0MHz, f2 = 10.1MHz, VOUT = 1VP-P fC = 10MHz, AVCL = 2
DP DG en in CIN COUT (OFF) ZOUT tON tOFF
NTSC, RL = 150 NTSC, RL = 150 f = 10kHz f = 10kHz
Note 1: Tested with VCM = 2.5V. Note 2: PSR for single 5V supply tested with VEE = 0, VCC = 4.5V to 5.5V; for dual 5V supply with VEE = -4.5V to -5.5V, VCC = 4.5V to 5.5V; and for single 3.3V supply with VEE = 0, VCC = 3.15V to 3.45V. Note 3: Does not include the external feedback network's impedance.
4
_______________________________________________________________________________________
Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable
__________________________________________Typical Operating Characteristics
(VCC = 5V, VEE = 0, AVCL = 1, RF = 24, RL = 100 to VCC/2, TA = +25C, unless otherwise noted.)
MAX4212/MAX4213 SMALL-SIGNAL GAIN vs. FREQUENCY
MAX4212/3/6/8/20-01
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
MAX4216/MAX4218/MAX4220 SMALL-SIGNAL GAIN vs. FREQUENCY
MAX4212/3/6/8/20-02
MAX4212/MAX4213 SMALL-SIGNAL GAIN vs. FREQUENCY
8 7 6 GAIN (dB) 5 4 3 2 1 0 -1 AVCL = 2 VOUT = 20mVP-P
MAX4212/3/6/8/20-03
4 3 2 1 GAIN (dB) VOUT = 20mVP-P
3 2 1 0 GAIN (dB) -1 -2 -3 -4 -5 -6 -7 VOUT = 20mVP-P
9
0 -1 -2 -3 -4 -5 -6 100k 1M 10M 100M 1G FREQUENCY (Hz)
100k
1M
10M
100M
1G
100k
1M
10M
100M
1G
FREQUENCY (Hz)
FREQUENCY (Hz)
MAX4216/MAX4218/MAX4220 SMALL-SIGNAL GAIN vs. FREQUENCY
MAX4212/3/6/8/20-04
LARGE-SIGNAL GAIN vs. FREQUENCY
3 2 1 GAIN (dB) GAIN (dB) 0 -1 -2 -3 -4 -5 -6 VOUT = 2VP-P VOUT BIAS = 1.75V
MAX4212/3/6/8/20-05
MAX4212/MAX4213 GAIN FLATNESS vs. FREQUENCY
0.6 0.5 0.4 0.3 0.2 0.1 0 -0.1 -0.2 -0.3
MAX4212/3/6/8/20-06
9 8 7 6 GAIN (dB) 5 4 3 2 1 0 -1 100k 1M 10M 100M AVCL = 2 VOUT = 20mVP-P
4
0.7
1G
100k
1M
10M
100M
1G
0.1M
1M
10M
100M
1G
FREQUENCY (Hz)
FREQUENCY (Hz)
FREQUENCY (Hz)
MAX4216/MAX4218/MAX4220 GAIN FLATNESS vs. FREQUENCY
MAX4212/3/6/8/20-07
MAX4216/MAX4218/MAX4220 CROSSTALK vs. FREQUENCY
30 10 CROSSTALK (dB) -10 -30 -50 -70 -90 -110 -130
MAX4212/3/6/8/20-08
CLOSED-LOOP OUTPUT IMPEDANCE vs. FREQUENCY
MAX4212/3/6/8/20-09
0.5 0.4 0.3 0.2 GAIN (dB) 0.1 0 -0.1 -0.2 -0.3 -0.4 -0.5 0.1M 1M 10M 100M
50
1000
100 IMPEDANCE ()
10
1
1G
-150 100k 1M 10M 100M 1G FREQUENCY (Hz)
0.1 0.1M 1M 10M 100M FREQUENCY (Hz)
FREQUENCY (Hz)
_______________________________________________________________________________________
5
Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
____________________________Typical Operating Characteristics (continued)
(VCC = 5V, VEE = 0, AVCL = 1, RF = 24, RL = 100 to VCC/2, TA = +25C, unless otherwise noted.)
HARMONIC DISTORTION vs. FREQUENCY (AVCL = 1)
MAX4212/3/6/8/20-10
HARMONIC DISTORTION vs. FREQUENCY (AVCL = 2)
MAX4212/3/6/8/20-11
HARMONIC DISTORTION vs. FREQUENCY (AVCL = 5)
-10 HARMONIC DISTORTION (dBc) -20 -30 -40 -50 -60 -70 -80 -90 -100 2ND HARMONIC 3RD HARMONIC VOUT = 2VP-P AVCL = 5
MAX4212/3/6/8/20-12
0 -10 HARMONIC DISTORTION (dBc) -20 -30 -40 -50 -60 -70 -80 -90 -100 100k 1M 10M 3RD HARMONIC 2ND HARMONIC VOUT = 2VP-P
0 -10 HARMONIC DISTORTION (dBc) -20 -30 -40 -50 -60 -70 -80 -90 -100 100k 1M 10M 2ND HARMONIC VOUT = 2VP-P AVCL = 2
0
3RD HARMONIC
100M
100M
100k
1M
10M
100M
FREQUENCY (Hz)
FREQUENCY (Hz)
FREQUENCY (Hz)
HARMONIC DISTORTION vs. LOAD
MAX4212/3/6/8/20-13
HARMONIC DISTORTION vs. OUTPUT SWING
MAX4212/3/6/8/20-14
DIFFERENTIAL GAIN AND PHASE
DIFF. GAIN (%) 0.02 0.01 0.00 -0.01 0 DIFF. PHASE (deg) 0.03 0.02 0.01 0.00 -0.01 0 IRE 100 IRE VCM = 1.35V 100 VCM = 1.35V
MAX4212/3/6/8/20-15
0 -10 HARMONIC DISTORTION (dBc) -20 -30 -40 -50 -60 -70 -80 -90 -100 0 200 400 600 LOAD () 800 3RD HARMONIC 2ND HARMONIC f = 5MHz VOUT = 2VP-P
0 -10 HARMONIC DISTORTION (dBc) -20 -30 -40 -50 -60 -70 -80 -90 -100 0.5 3RD HARMONIC 1.0 1.5 OUTPUT SWING (VP-P) 2ND HARMONIC fO = 5MHz
0.03
1000
2.0
COMMON-MODE REJECTION vs. FREQUENCY
MAX4212/3/6/8/20-16
POWER-SUPPLY REJECTION vs. FREQUENCY
MAX4212/3/6/8/20-17
OUTPUT SWING vs. LOAD RESISTANCE (RL)
4.0 OUTPUT SWING (Vp-p) 3.5 3.0 2.5 2.0 1.5 1.0
MAX4212/3/6/8/20-18
0 -10 -20 -30 CMR (dB) -40 -50 -60 -70 -80 -90 -100 100k 1M 10M 100M FREQUENCY (Hz)
20 POWER-SUPPLY REJECTION (dB) 10 0 -10 -20 -30 -40 -50 -60 -70 -80 100k 1M 10M 100M FREQUENCY (Hz)
4.5
AVCL = 2 25 50 75 100 125 LOAD RESISTANCE () 150
6
_______________________________________________________________________________________
Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
____________________________Typical Operating Characteristics (continued)
(VCC = 5V, VEE = 0, AVCL = 1, RF = 24, RL = 100 to VCC/2, TA = +25C, unless otherwise noted.)
SMALL-SIGNAL PULSE RESPONSE (AVCL = 1)
MAX4212/3/6/8/20-19
SMALL-SIGNAL PULSE RESPONSE (AVCL = 2)
MAX4212/3/6/8/20-20
SMALL-SIGNAL PULSE RESPONSE (CL = 5pF, AVCL = 1)
MAX4212/3/6/8/20-21
IN (50mV/ div) VOLTAGE
IN (25mV/ div) VOLTAGE
IN (50mV/ div) VOLTAGE OUT (25mV/ div) 20ns/div VCM = 1.25V, RL = 100 to GROUND
OUT (25mV/ div)
OUT (25mV/ div)
20ns/div VCM = 2.5V, RL = 100 to GROUND
20ns/div VCM = 1.75V, RL = 100 to GROUND
LARGE-SIGNAL PULSE RESPONSE (AVCL = 1)
MAX4212/3/6/8/20-22
LARGE-SIGNAL PULSE RESPONSE (AVCL = 2)
MAX4212/3/6/8/20-23
LARGE-SIGNAL PULSE RESPONSE (CL = 5pF, AVCL = 2)
MAX4212/3/6/8/20-24
IN (1V/div) VOLTAGE
IN (500mV/ div) VOLTAGE VOLTAGE
IN (1V/ div)
OUT (1V/div)
OUT (500mV/ div)
OUT (500mV/ div)
20ns/div VCM = 1.75V, RL = 100 to GROUND
20ns/div VCM = 0.9V, RL = 100 to GROUND
20ns/div VCM = 1.75V, RL = 100 to GROUND
MAX4213 VOLTAGE-NOISE DENSITY vs. FREQUENCY
MAX4212/3/6/8/20-25
MAX4218 CURRENT-NOISE DENSITY vs. FREQUENCY
MAX4212/3/6/8/20-26
ENABLE RESPONSE TIME
MAX4212/3/6/8/20-27
100
10
5.0V (ENABLE) EN_ 0 (DISABLE)
NOISE (nV/Hz)
10
NOISE (pA/Hz)
OUT
1V
0 1 1 10 100 1k 10k 100k 1M 10M FREQUENCY (Hz) 1 1 10 100 1k 10k 100k 1M 10M VIN = 1.0V 1s/div FREQUENCY (Hz)
_______________________________________________________________________________________
7
Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
____________________________Typical Operating Characteristics (continued)
(VCC = 5V, VEE = 0, AVCL = 1, RF = 24, RL = 100 to VCC/2, TA = +25C, unless otherwise noted.)
OPEN-LOOP GAIN vs. LOAD RESISTANCE
MAX4212/3/6/8/20-28
CLOSED-LOOP BANDWIDTH vs. LOAD RESISTANCE
MAX4212/3/6/8/20-29
OFF-ISOLATION vs. FREQUENCY
0 -10 OFF-ISOLATION (dB) -20 -30 -40 -50 -60 -70
MAX4212/3/6/8/20-30
70
400 CLOSED-LOOP BANDWIDTH (MHz) 350 300 250 200 150 100 50 0
10
60 OPEN-LOOP GAIN (dB)
50
40
30
-80 -90 0 100 200 300 400 500 LOAD RESISTANCE () 600 100k 1M 10M FREQUENCY (Hz) 100M
20 0 200 400 600 800 LOAD RESISTANCE () 1k
POWER-SUPPLY CURRENT vs. TEMPERATURE
MAX4212/3/6/8/20-31
INPUT BIAS CURRENT vs. TEMPERATURE
MAX4212/3/6/8/20-32
INPUT OFFSET CURRENT vs. TEMPERATURE
MAX4212/3/6/8/20-33
7 POWER-SUPPLY CURRENT (mA)
6.0
0.20 INPUT OFFSET CURRENT (A)
INPUT BIAS CURRENT (A)
6
5.5
0.16
0.12
5
5.0
0.08
4
4.5
0.04
3 -50 -25 0 25 50 TEMPERATURE (C) 75 100
4.0 -50 -25 0 25 50 TEMPERATURE (C) 75 100
0 -50 -25 0 25 50 TEMPERATURE (C) 75 100
POWER-SUPPLY CURRENT vs. POWER-SUPPLY VOLTAGE
MAX4212/3/6/8/20-34
INPUT OFFSET VOLTAGE vs. TEMPERATURE
MAX4212/3/6/8/20-35
VOLTAGE SWING vs. TEMPERATURE
RL = 150 TO VCC/2 VOLTAGE SWING (Vp-p) 4.8
MAX4212/3/6/8/20-36
10 POWER-SUPPLY CURRENT (mA) 8
5 INPUT OFFSET VOLTAGE (mV)
5.0
4
6
3
4.6
4
2
4.4
2
1
4.2
0 3 4 5 6 7 8 9 10 POWER-SUPPLY VOLTAGE (V) 11
0 -50 -25 0 25 50 TEMPERATURE (C) 75 100
4.0 -50 -25 0 25 50 TEMPERATURE (C) 75 100
8
_______________________________________________________________________________________
Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable
______________________________________________________________Pin Description
PIN MAX4212 MAX4213 MAX4216 SOT23 SO/MAX SO/MAX -- 1 2 3 4 5 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 1, 5 6 4 3 2 7 -- -- -- -- -- -- -- -- -- -- -- -- 8 -- -- -- -- -- 4 -- -- 8 1 2 3 7 6 5 -- -- -- -- -- -- -- -- -- -- MAX4218 SO -- -- 11 -- -- 4 7 6 5 8 9 10 14 13 12 -- -- -- -- 1 3 2 QSOP 8, 9 -- 13 -- -- 4 7 6 5 10 11 12 16 15 14 -- -- -- -- 1 3 2 MAX4220 SO -- -- 11 -- -- 4 1 2 3 7 6 5 8 9 10 14 13 12 -- -- -- -- QSOP 8, 9 -- 13 -- -- 4 1 2 3 7 6 5 10 11 12 16 15 14 -- -- -- -- N.C. OUT VEE IN+ INVCC OUTA INAINA+ OUTB INBINB+ OUTC INCINC+ OUTD INDIND+ EN ENA ENB ENC No Connection. Not internally connected. Tie to ground or leave open. Amplifier Output Negative Power Supply or Ground (in single-supply operation) Noninverting Input Inverting Input Positive Power Supply Amplifier A Output Amplifier A Inverting Input Amplifier A Noninverting Input Amplifier B Output Amplifier B Inverting Input Amplifier B Noninverting Input Amplifier C Output Amplifier C Inverting Input Amplifier C Noninverting Input Amplifier D Output Amplifier D Inverting Input Amplifier D Noninverting Input Enable Amplifier Enable Amplifier A Enable Amplifier B Enable Amplifier C NAME FUNCTION
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
_______________________________________________________________________________________
9
Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
_______________Detailed Description
The MAX4212/MAX4213/MAX4216/MAX4218/MAX4220 are single-supply, rail-to-rail, voltage-feedback amplifiers that employ current-feedback techniques to achieve 600V/s slew rates and 300MHz bandwidths. Excellent harmonic distortion and differential gain/ phase performance make these amplifiers an ideal choice for a wide variety of video and RF signalprocessing applications. The output voltage swing comes to within 50mV of each supply rail. Local feedback around the output stage assures low open-loop output impedance to reduce gain sensitivity to load variations. This feedback also produces demand-driven current bias to the output transistors for 100mA drive capability, while constraining total supply current to less than 7mA. The input stage permits common-mode voltages beyond the negative supply and to within 2.25V of the positive supply rail. improves AC response by reducing the Q of the parallel LC circuit formed by the parasitic feedback capacitance and inductance. Inverting and Noninverting Configurations Select the gain-setting feedback (RF) and input (RG) resistor values to fit your application. Large resistor values increase voltage noise and interact with the amplifier's input and PC board capacitance. This can generate undesirable poles and zeros and decrease bandwidth or cause oscillations. For example, a noninverting gain-of-two configuration (RF = RG) using 1k resistors, combined with 1pF of amplifier input capacitance and 1pF of PC board capacitance, causes a pole at 159MHz. Since this pole is within the amplifier bandwidth, it jeopardizes stability. Reducing the 1k resistors to 100 extends the pole frequency to 1.59GHz, but could limit output swing by adding 200 in parallel with the amplifier's load resistor. Table 1 shows suggested feedback, gain resistors, and bandwidth for several gain values in the configurations shown in Figures 1a and 1b.
__________Applications Information
Choosing Resistor Values
Unity-Gain Configuration The MAX4212/MAX4213/MAX4216/MAX4218/MAX4220 are internally compensated for unity gain. When configured for unity gain, the devices require a 24 resistor (R F ) in series with the feedback path. This resistor
Layout and Power-Supply Bypassing
These amplifiers operate from a single 3.3V to 11V power supply or from dual supplies to 5.5V. For single-supply operation, bypass VCC to ground with a 0.1F capacitor as close to the pin as possible. If operating with dual supplies, bypass each supply with a 0.1F capacitor.
RG
RF
IN
RG
RF
RTO
VOUT
RTIN
RTO
VOUT
IN RTIN
VOUT = [1+ (RF / RG)] VIN
RO
RS
VOUT = -(RF / RG) VIN
RO
Figure 1a. Noninverting Gain Configuration
Figure 1b. Inverting Gain Configuration
10
______________________________________________________________________________________
Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable
Maxim recommends using microstrip and stripline techniques to obtain full bandwidth. To ensure that the PC board does not degrade the amplifier's performance, design it for a frequency greater than 1GHz. Pay careful attention to inputs and outputs to avoid large parasitic capacitance. Whether or not you use a constantimpedance board, observe the following guidelines when designing the board: * Don't use wire-wrap boards because they are too inductive. * Don't use IC sockets because they increase parasitic capacitance and inductance. * Use surface-mount instead of through-hole components for better high-frequency performance. * Use a PC board with at least two layers; it should be as free from voids as possible. * Keep signal lines as short and as straight as possible. Do not make 90 turns; round all corners. The output swings to within 50mV of either powersupply rail with a 10k load. The input ground-sensing and the rail-to-rail output substantially increase the dynamic range. With a symmetric input in a single 5V application, the input can swing 2.95VP-P, and the output can swing 4.9VP-P with minimal distortion.
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Enable Input and Disabled Output
The enable feature (EN_) allows the amplifier to be placed in a low-power, high-output-impedance state. Typically, the EN_ logic low input current (IIL) is small. However, as the EN voltage (VIL) approaches the negative supply rail, IIL increases (Figure 2). A single resistor connected as shown in Figure 3 prevents the rise in the logic-low input current. This resistor provides a feedback mechanism that increases VIL as the logic input is brought to VEE. Figure 4 shows the resulting input current (IIL). When the MAX4213/MAX4218 are disabled, the amplifier's output impedance is 35k. This high resistance and the low 2pF output capacitance make these parts ideal in RF/video multiplexer or switch applications. For larger arrays, pay careful attention to capacitive loading. See the Output Capacitive Loading and Stability section for more information.
Rail-to-Rail Outputs, Ground-Sensing Input
The input common-mode range extends from (VEE - 200mV) to (VCC - 2.25V) with excellent commonmode rejection. Beyond this range, the amplifier output is a nonlinear function of the input, but does not undergo phase reversal or latchup.
Table 1. Recommended Component Values
GAIN (V/V) COMPONENT +1 RF () RG () RS () RTIN () RTO () Small-Signal -3dB Bandwidth (MHz) 24 -- 49.9 49.9 300 -1 500 500 0 56 49.9 90 +2 500 500 -- 49.9 49.9 105 -2 500 250 0 62 49.9 60 +5 500 124 -- 49.9 49.9 25 -5 500 100 0 100 49.9 33 +10 500 56 -- 49.9 49.9 11 -10 500 50 0 49.9 25 +25 500 20 -- 49.9 49.9 6 -25 1200 50 0 49.9 10
Note: RL = RO + RTO; RTIN and RTO are calculated for 50 applications. For 75 systems, RTO = 75; calculate RTIN from the following equation:
R TIN =
75 75 1RG
______________________________________________________________________________________
11
Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
20 0 -20 INPUT CURRENT (A) -40 -60 -80 IN+ -100 -120 -140 -160 0 50 100 150 200 250 300 350 400 450 500 mV ABOVE VEE
MAX42_ _
ENABLE
10k INEN_ OUT
Figure 3. Circuit to Reduce Enable Logic-Low Input Current
Output Capacitive Loading and Stability
Figure 2. Enable Logic-Low Input Current vs. VIL
0 -1 -2 INPUT CURRENT (A) -3 -4 -5 -6 -7 -8 -9 -10 0 50 100 150 200 250 300 350 400 450 500 mV ABOVE VEE
The MAX4212/MAX4213/MAX4216/MAX4218/MAX4220 are optimized for AC performance. They are not designed to drive highly reactive loads, which decreases phase margin and may produce excessive ringing and oscillation. Figure 5 shows a circuit that eliminates this problem. Figure 6 is a graph of the optimal isolation resistor (RS) vs. capacitive load. Figure 7 shows how a capacitive load causes excessive peaking of the amplifier's frequency response if the capacitor is not isolated from the amplifier by a resistor. A small isolation resistor (usually 20 to 30) placed before the reactive load prevents ringing and oscillation. At higher capacitive loads, AC performance is controlled by the interaction of the load capacitance and the isolation resistor. Figure 8 shows the effect of a 27 isolation resistor on closed-loop response. Coaxial cable and other transmission lines are easily driven when properly terminated at both ends with their characteristic impedance. Driving back-terminated transmission lines essentially eliminates the line's capacitance.
Figure 4. Enable Logic-Low Input Current vs. VIL with 10k Series Resistor
12
______________________________________________________________________________________
Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
30 RG RF ISOLATION RESISTANCE, RISO () 25 20 15 10 5 0 0 50 100 150 200 CAPACITIVE LOAD (pF) 250
RISO
MAX42_ _
VOUT CL
VIN RTIN 50
Figure 5. Driving a Capacitive Load through an Isolation Resistor
Figure 6. Capacitive Load vs. Isolation Resistance
6 5 4 3 GIAN (dB) GIAN (dB) 2 1 0 -1 -2 -3 -4 100k 1M 10M 100M 1G FREQUENCY (Hz) CL = 5pF CL = 10pF CL = 15pF
3 2 1 0 -1 -2 -3 -4 -5 -6 -7 100k 1M 10M 100M 1G FREQUENCY (Hz) CL = 68pF CL = 120pF RISO = 27 CL = 47pF
Figure 7. Small-Signal Gain vs. Frequency with Load Capacitance and No Isolation Resistor
Figure 8. Small-Signal Gain vs. Frequency with Load Capacitance and 27 Isolation Resistor
______________________________________________________________________________________
13
Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Pin Configurations (continued)
TOP VIEW
ENA 1 ENC 2 ENB 3 VCC 4 INA+ 5 INA- 6 OUTA 7
14 OUTC 13 INC12 INC+
OUTA 1 INA- 2 INA+ 3 VCC 4 INB+ 5 INB- 6 OUTB 7
14 OUTD 13 IND12 IND+
MAX4218
11 VEE 10 INB+ 9 8 INBOUTB
MAX4220
11 VEE 10 INC+ 9 8 INCOUTC
SO
OUTA 1 INA2
8 7
VCC OUTB INBINB+
SO
INA+ 3 VEE 4
MAX4216
6 5
ENA 1 ENC 2 ENB 3 VCC 4 INA+ 5 INA- 6 OUTA 7 N.C. 8
16 OUTC 15 INC14 INC+
MAX/SO
OUTA 1 INA- 2 INA+ 3 VCC 4 INB+ 5 INB- 6 OUTB 7 N.C. 8
16 OUTD 15 IND14 IND+
MAX4218
13 VEE 12 INB+ 11 INB10 OUTB 9 N.C.
MAX4220
13 VEE 12 INC+ 11 INC10 OUTC 9 N.C.
QSOP
QSOP
14
______________________________________________________________________________________
Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable
_Ordering Information (continued)
PART MAX4216ESA MAX4216EUA MAX4218ESD MAX4218EEE MAX4220ESD MAX4220EEE TEMP RANGE -40C to +85C -40C to +85C -40C to +85C -40C to +85C -40C to +85C -40C to +85C PIN PACKAGE 8 SO 8 MAX 14 SO 16 QSOP 14 SO 16 QSOP TOP MARK -- -- -- -- -- --
Chip Information
MAX4212/MAX4213 TRANSISTOR COUNT: 95 MAX4216 TRANSISTOR COUNT: 190 MAX4218 TRANSISTOR COUNT: 299 MAX4220 TRANSISTOR COUNT: 362
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)
SOT-23 5L .EPS
PACKAGE OUTLINE, SOT-23, 5L
21-0057
E
1 1
______________________________________________________________________________________
15
Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)
8LUMAXD.EPS
4X S
8
8
INCHES DIM A A1 A2 b MIN 0.002 0.030 MAX 0.043 0.006 0.037
MILLIMETERS MAX MIN 0.05 0.75 1.10 0.15 0.95
y 0.500.1
E
H
0.60.1
c D e E H L
1
1
0.60.1
S
D
BOTTOM VIEW
0.014 0.010 0.007 0.005 0.120 0.116 0.0256 BSC 0.120 0.116 0.198 0.188 0.026 0.016 6 0 0.0207 BSC
0.25 0.36 0.13 0.18 2.95 3.05 0.65 BSC 2.95 3.05 4.78 5.03 0.41 0.66 0 6 0.5250 BSC
TOP VIEW
A2
A1
A
c e b L
SIDE VIEW
FRONT VIEW
PROPRIETARY INFORMATION TITLE:
PACKAGE OUTLINE, 8L uMAX/uSOP
APPROVAL DOCUMENT CONTROL NO. REV.
21-0036
1 1
J
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
16 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 (c) 2003 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.
QSOP.EPS


▲Up To Search▲   

 
Price & Availability of MAX4218

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X